A Student Model of Technical Japanese Reading Proficiency for an Intelligent Tutoring System

Authors

  • Yun-Sun Kang
  • Anthony A. Maciejewski

DOI:

https://doi.org/10.1558/cj.v18i1.9-40

Keywords:

Japanese, Technical Literature, Intelligent Tutoring Systems, Natural Language Processing, Artificial Intelligence, Parsing

Abstract

This article presents the development of a student model that is used in a Japanese language intelligent tutoring system to assess pupils' proficiency at reading technical Japanese. A computer-assisted knowledge acquisition system is designed to generate a domain knowledge base for a Japanese language intelligent tutoring system. The domain knowledge represents a model of the expertise that a native English speaker must acquire in order to be proficient at reading technical Japanese. The algorithms described here are able to generate a set of grammatical transformation rules that clarify changes of syntactic structures between a Japanese text and its corresponding English translation, use them to assess a student's proficiency, and then appropriately individualize the student's instructions.

References

Anderson, J. R. (1988). The expert module. In M. C. Polson & J. J. Richardson (Eds.), Foundations of intelligent tutoring systems (pp. 21-53). Hillsdale, NJ: Lawrence Erlbaum Associates.

Boose, J. H., & Bradshaw, J. M. (1987). Expertise transfer and complex problems: Using AQUINAS as a knowledge-acquisition workbench for knowledgebased systems. International Journal of Man-Machine Studies, 26, 3-28.

Carr, B., & Goldstein, I. (1977). Overlays: A theory of modeling for computer aided instruction. Cambridge, MA: MIT, Artificial Intelligence Laboratory.

Daub, E. E., Bird, R. B., & Inoue, N. (1975). Comprehending Technical Japanese. Tokyo, Japan: University of Tokyo Press.

Diederich, J., Ruhmann, I., & May, M. (1987). KRITON: A knowledge-acquisition tool for expert systems. International Journal of Man-Machine Studies, 26, 29-40.

Hoffmann, C. M., & O’Donnell, M. J. (1982). Pattern matching in trees. Journal of the Association for Computing Machinery, 29, 68-95.

Isahara, H. (1993). Analysis and semantic representation in CONTRAST, a context-based machine translation system. Bulletin of the Electrotechnical Laboratory, 57 (2), 161-173.

Maciejewski, A. A., & Kang, Y.-S. (1994). A student model of katakana reading proficiency for a Japanese language intelligent tutoring system. IEEE (Institute of Electrical and Electronics Engineers) Transactions on Systems, Man, and Cybernetics, 24 (9), 1347-1357.

Maciejewski, A. A., & Leung, N. K. (1992). The Nihongo tutorial system: An intelligent tutoring system for technical Japanese language instruction. CALICO Journal, 9, 5-25.

Mandl, H., & Lesgold, A. (Eds.). (1988). Learning issues for intelligent tutoring systems. New York: Springer-Verlag.

Mills, D. O., Samuels, R. J., & Sherwood, S. L. (1988). Technical Japanese for scientists and engineers: Curricular options (Technical Report MITJSTP WP 88-02). Cambridge, MA: MIT.

Nagata, N. (1995). An effective application of natural language processing in second language instruction. CALICO Journal, 13, 47-67.

Nagata, N. (1996). Computer vs. workbook instruction in second language acquisition. CALICO Journal, 14, 53-75.

Park, O.-C., Perez, R. S., & Seidel, R. J. (1987). Intelligent CAI: Old wine in new bottles, or a new vintage? In G. Kearsley (Ed.), Artificial intelligence and instruction (pp. 11-45). Reading, MA: Addison Wesley.

Polson, M. C., & Richardson, J. J. (Eds.). (1988). Foundations of intelligent tutoring systems. Hillsdale, NJ: Lawrence Erlbaum Associates.

Rickel, J. W. (1989). Intelligent computer-aided instruction: A survey organized around system components. IEEE (Institute of Electrical and Electronics Engineers) Transactions on Systems, Man, and Cybernetics, 19, 40-57.

Sanders, A. F., & Sanders, R. H. (1989). Syntactic parsing: A survey. Computers and the Humanities, 23, 13-30.

Schwind, C. B. (1990). An intelligent language tutoring system. International Journal of Man-Machine Studies, 33, 557-579.

Swartz, M. L. (1992). Issues for tutoring knowledge in foreign language intelligent tutoring systems. In M. L. Swartz & M. Yazdani (Eds.), Intelligent tutoring systems for foreign language learning (pp. 219-233). Berlin: SpringerVerlag, 1992.

Tomita, M. (1986). Efficient parsing for natural language. Boston, MA: Kluwer Academic.

Twidale, M. B. (1992). Knowledge acquisition for intelligent tutoring systems In F. L. Engel, D. G. Bouwhuis, T. Bosser, & G. d’Ydewalle (Eds.), Cognitive modeling and interactive environments in language learning (pp. 63-71). Berlin: Springer-Verlag.

Wagner, A., & Fischer, M. J. (1974). The string-to-string correction problem. Journal of the Association for Computing Machinery, 21, 168-173.

Wenger, E. (1987). Artificial intelligence and tutoring systems. Los Altos, CA: Morgan Kaufmann.

Yang, J. C., & Akahori, K. (1998). Error analysis in Japanese writing and its implementation in a computer assisted language learning system. CALICO Journal, 15, 47-66.

Yazdani, M. (1987). Intelligent tutoring system: An overview. In R. W. Lawler & M. Yazdani (Eds.), Artificial Intelligence and Education (Vol. 1, pp. 183-201). Norwood, NJ: Ablex.

Downloads

Published

2013-01-14

Issue

Section

Articles

How to Cite

Kang, Y.-S., & Maciejewski, A. A. (2013). A Student Model of Technical Japanese Reading Proficiency for an Intelligent Tutoring System. CALICO Journal, 18(1), 9-40. https://doi.org/10.1558/cj.v18i1.9-40