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Introduction

This document provides supporting information on the analysis of the main text. As its 
details are quite technical or tangential to the argument of the main text, it was decided 
they would be best presented in an online-only supporting text.

Code

The R code used for these simulations, including both the Alignment Model and the 
implementation of the curvigram and maximum likelihood (ML) methods as well as the 
resulting fitted equations (see below), is available in the author’s GitHub page (https://
github.com/f-silva-archaeo/InferAlignments1).

Results

Precision of the Curvigram Method

To estimate the precision of the curvigram method, one has to derive an equation from 
the simulated data (unlike for the ML approach, where an algebraic equation can be 
derived from first principles, see below). To do this, and because of the extra parameter 
in this approach, we have simulated 10 x 20 x 15 parameter combinations with 10,000 
Monte Carlo iterations for each combination. The measurement uncertainty was varied 
from 1° to 10°, the deviation from 1° to 20° and the number of sites could take one of 
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the following values: 5, 10, 20, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500 or 1000. 
Figure SF1 shows how the results vary for two values of the measurement uncertainty 
different than that shown in figure 8 of the main text.

FIGURE SF1. Inferential precision for the curvigram single target scenario for two levels of measurement 
uncertainty and varying levels of deviation from target and number of surveyed sites. These figures are 
directly comparable to Figure 8 in the main text. The black lines are a fit to the 2° precision values.

To be able to predict the precision of the method when using it on an empirical 
dataset, an equation was fitted to this data using R (2016). Since one is interested in an 
accurate emulation of the results (as opposed to a parsimonious model), and there is no 
theoretical background to suggest a particular relationship in this case, the fit was done 
to a maximum polynomial degree of two for each variable with possibility of interac-
tions between them. An analysis of variance (ANOVA) test was then conducted in order 
to choose the best explanatory model, which turned out to be the most complex one. 
The resulting equation is quite complex, with 27 coefficients, but the expected values 
correlate well with the results of the simulation (r-squared of 0.9969), meaning that the 
equation provides an accurate estimate for the precision of the curvigram method. The 
equation has the following form:
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where σ is the the standard deviation in the dataset which, in the main text, we have 
called total deviation, δ is the measurement uncertainty and log(N) is the natural loga-
rithm of N, the number of archaeological sites in the dataset (i.e. the sample size). The 
estimates for the lettered coefficients are given in table ST1.

TABLE ST1. Coefficients for equation SE1, estimated via a multivariate regression.

Coefficient Estimate Std Error

Ø 2.568E-02 5.623E-01

A 2.391E+00 1.233E-01

B -3.620E-02 5.704E-03

C -5.822E-01 2.806E-01

D 5.815E-02 3.252E-02

E -1.004E+00 2.348E-01

F 7.711E-02 2.081E-02

G -2.673E-01 6.154E-02

H 5.132E-03 2.846E+00

I 3.285E-03 7.131E-03

J -2.257E-05 3.299E-04

K 2.561E-01 5.150E-02

L -1.179E-02 2.382E-03

M -2.821E-02 4.563E-03

N 1.535E-03 2.111E-04

O 3.493E-01 1.172E-01

P -1.991E-02 1.358E-02

Q -1.643E-02 1.038E-02

R 1.099E-05 1.203E-03

S -1.915E-01 2.570E-02

T 9.331E-03 1.189E-03

U 1.748E-02 2.978E-03

V -9.655E-04 1.378E-04

W 1.334E-02 2.277E-03

X -8.288E-04 1.053E-04

Y -9.556E-04 2.639E-04

Z 7.335E-05 1.221E-05

As this equation is quite complex, a simpler relationship that could provide a measure 
of the minimum number of sites required to have good precision was sought. Fitting the 
results of the simulation for a precision of 2° yielded the following power-law relation:
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where x, the power-law coefficient, varies for different values of the measurement uncer-
tainty. This relationship can be obtained from the simulated data by fitting the value of 
x versus the values of measurement uncertainty used. The relationship turns out to be 
log-linear (r-squared of 0.996902) as shown in figure SF2.

FIGURE SF2. Evolution of the coefficient of the power-law relation SE2 for varying values of measurement 
uncertainty.

This yields the following equation for estimating the minimum number of sites required 
to ensure that the curvigram method has a precision of 2° or better:

where the coefficients are given in table ST2.
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TABLE ST2. Coefficients for equation SE3, estimated via linear regression.

Coefficient Estimate Std Error

α 0.247799 0.002456

b 0.074932 0.001477

Closer scrutiny of this relation further highlights the point made in the main text that 
the measurement uncertainty should not be lower than the deviation present in the 
data. Figure SF3 plots equation SE3 for the minimum number of sites necessary to have 
precision of 2° or better for five different scenarios of varying deviation (black curves). 
The figure makes it clear that, for ratios above unity (to the right of the vertical blue line), 
that is for curvigram analyses where the measurement uncertainty is larger than the 
deviation present in the data, the number of sites required to achieve high precision 
is quite low. Conversely, for ratios below unity (i.e. to the left of the vertical blue line), 
the minimum number of sites increases dramatically, emphasising the need to use an 
uncertainty that is larger than the deviation in the dataset.

FIGURE SF3. Minimum number of sites required to ensure a high precision versus the ratio between 
the curvigram measurement uncertainty and the total deviation in the data for varying values of total 
deviation (black curves). The vertical blue line marks a ratio equal to unity, i.e. when measurement 
uncertainty and total deviation are the same.
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Measurement Uncertainty vs Bandwidth

Kernel Density Estimators (KDE) use the bandwidth parameter in order to smooth the 
resulting distribution in such a way as to more accurately recover the limiting distribu-
tion. This is a free parameter for which there is no theoretical value and which is often 
estimated. Most standard estimates (Jones et al. 1996) agree that the bandwidth should 
be inversely proportional to the sample size, meaning that it should be larger for small 
number of samples (and therefore providing more smoothing) and smaller for large 
sample sizes. We are now in a position to compare the ideal value for the measurement 
uncertainty and that given by KDE bandwidth estimators.

Most estimators, such as MISE and AMISE (Jones et al. 1996), are quite complicated to 
implement and data-specific. We therefore look at one of the simplest, Silverman’s rule-of 
thumb estimator (Silverman 1986), which is appropriate for situations where the limiting 
distribution is a Gaussian curve, as is the case with the Alignment Model implement in this 
paper. Silverman’s rule of thumb for the KDE bandwidth parameter (bw) is of the form:

whereas equation SE3 can be rewritten to express the minimum measurement uncer-
tainty that one should use in the curvigram method to ensure that the estimate will be 
precise to within 2°. This effectively constitutes an estimator for KDE bandwidth which, 
for the single target scenario explored in this paper, ensures that the inferred precision is 
of 2° or better. This new estimator is:

Figure SF4 compares these two estimators for varying numbers of sites and values 
of total deviation. We can see that, for any given total deviation value, Silverman’s rule-
of-thumb underestimates the bandwidth up to a certain number of sites, after which the 
bandwidth is above the minimum measurement uncertainty to ensure high precision, 
making it optimal. This doesn’t prevent other, more powerful, bandwidth estimators 
from performing better. This will be easily checked by future scholars by comparing the 
estimators with equation SE5 above.

Precision of the Maximum Likelihood Method (ML)

For the single target scenario, where all measurements have the same uncertainty, the 
ML estimate is equal to the mean (Taylor 1997, 97) which is given by:

where хi is an individual measurement and N is the number of measurements (the sample 
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size). This mean has an associated error that is given by the so-called standard deviation 
of the mean (Taylor 1997, 102):

where σ is the standard deviation in the dataset which, in the main text, we have called 
total deviation. The theoretical precision for the ML method, therefore, is associated to 
this standard deviation of the mean. To work at 95% confidence level, the precision is 
given by 1.96 standard deviations:

FIGURE SF4. Minimum Measurement Uncertainty to ensure precision of 2° or better (black curves) versus 
Silverman’s rule-of-thumb estimator for the KDE bandwidth parameter (blue curves) for varying number of 
sites and values of total deviation.



Fabio SilvaS8

© 2017 EQUINOX PUBLISHING LTD

It then becomes trivial to estimate how many samples (i.e. how many archaeological 
sites) are needed to achieve a given precision level, P. The equation is derived as follows:

Therefore, for a minimum precision of two degrees (P=2°) we get:

which is the same as equation E2 in the main text. Alternatively, a combination of equa-
tions SE7 and SE8 allows one to estimate the precision for any empirical dataset as:

To see how the theoretical expectation for the precision (equation SE11) compares with 
the results of the analysis of the Monte Carlo simulations, the expected value has been 
plotted against the obtained values in figure SF5 below. They closely follow the iden-
tity line (in blue) and produce a very high correlation coefficient of 0.99795, therefore 
demonstrating that the algebraically-derived equation is a good predictor for the preci-
sion of the ML method.

Discussion

Equations SE3 and SE10 give the minimum number of sites required for each of the 
methods to have a precision of 2° and, therefore, they are directly comparable – the key 
difference being the power-law coefficient. Figure SF6 compares the values of this coef-
ficient for different measurement uncertainties. It makes clear that, for the (low) levels 
of curvigram uncertainty typically considered by archaeoastronomers, the coefficient 
is always larger than that of the ML method, meaning that the curvigram method will 
require a much larger sample size to ensure high precision. The two methods have the 
same coefficient at a value of measurement uncertainty given by:

which is too high for any practical purposes.
This short analysis complements the discussion in the main text and shows that the 

curvigram method is highly sensitive to the measurement uncertainty. If the latter is 
underestimated, then the method becomes very imprecise, requiring considerably more 
structures to be surveyed and analysed in order to reach the same levels of precision of 
the ML method.
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FIGURE SF5. Comparison of the expected (theoretical) and obtained (simulated) precision of the ML 
method, also showing their correlation coefficient and the identity line (in solid blue).
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FIGURE SF6. Power-law coefficient of equations SE3 (red curve) and SE10 (blue line) for the curvigram and 
ML methods, respectively. The small circle marks the value of measurement uncertainty for which both 
methods have the same coefficient and, therefore, require the same number of sites to reach the same 
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