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ABSTRACT   A new method for doing text-independent speaker identification geared
to forensic situations is presented. By analysing ‘isolexemic’ sequences, the method
addresses the issues of very short criminal exemplars and the need for open-set identifi-
cation. An algorithm is given that computes an average spectral shape of the speech to
be analysed for each glottal pulse period. Each such spectrum is converted to a proba-
bility density function and the first moment (i.e. the mean) and the second moment
about the mean (i.e. the variance) are computed. Sequences of moment values are used
as the basis for extracting variables that discriminate among speakers. Ten variables are
presented all of which have sufficiently high inter- to intraspeaker variation to be
effective discriminators. A case study comprising a ten-speaker database, and ten
unknown speakers, is presented. A discriminant analysis is performed and the statistical
measurements that result suggest that the method is potentially effective. The report
represents work in progress. 

KEYWORDS  speaker identification, spectral moments, isolexemic sequences, glottal
pulse period

PREFACE
Although it is unusual for a scholarly work to contain a preface, the con-
troversial nature of our research requires two caveats, which are herein
presented.

First, the case study described in our article to support our method-
ology was performed on sanitized data, that is, data not subjected to the
degrading effect of telephone transmission or a recording medium such as
a tape recorder. We acknowledge, in agreement with Künzel (1997), that
studies based strictly on formant frequency values are undermined by tele-
phone transmission. Our answer to this is that our methodology is based
on averages of entire spectral shapes of the vocal tract. These spectra are
derived by a pitch synchronous Fourier analysis that treats the vocal tract
as a filter that is driven by the glottal pulse treated as an impulse function.
We believe that the averaging of such spectral shapes will mitigate the
degrading effect of the transmittal medium. The purpose of this study,

© University of Birmingham Press 2002 1350-1771
Forensic Linguistics 9(1) 2002



Forensic speaker identification based on spectral moments

however, is to show that the method, being novel, is promising when used
on ‘clean’ data.

We also acknowledge, and discuss below in the ‘Background’ section,
the fact that historically spectral parameters have not proved successful as
a basis for accurate speaker identification. Our method, though certainly
based on spectral parameters, considers averages of entire, pitch inde-
pendent spectra as represented by spectral moments, which are then
plotted in curves that appear to reflect individual speaking characteristics.
The other novel part of our approach is comparing ‘like-with-like’. We
base speaker identification on the comparison of manually extracted
‘isolexemic’ sequences. This, we believe, permits accurate speaker identifi-
cation to be made on very short exemplars. Our methods are novel and so
far unproven on standardized testing databases (though we are in the
process of remedying this lacuna). The purpose of this article is to pub-
licize our new methodology to the forensic speech community both in the
hopes of stimulating research in this area, and of engendering useful
exchanges between ourselves and other researchers from which both
parties may benefit.

INTRODUCTION
Speaker identification is the process of determining who spoke a recorded
utterance. This process may be accomplished by humans alone, who
compare a spoken exemplar with the voices of individuals. It may be
accomplished by computers alone, which are programmed to identify sim-
ilarities in speech patterns. It may alternatively be accomplished through a
combination of humans and computers working in concert, the situation
described in this article.

Whatever the case, the focus of the process is on a speech exemplar – a
recorded threat, an intercepted message, a conspiracy recorded surrepti-
tiously – together with the speech of a set of suspects, among whom may
or may not be the speaker of the exemplar. The speech characteristics of
the exemplar are compared with the speech characteristics of the suspects
in an attempt to make the identification.

More technically and precisely, given a set of speakers S = {S
1
… S

N
}, a

set of collected utterances U = {U
1

… U
N
} made by those speakers, and a

single utterance u
X

made by an unknown speaker: closed-set speaker iden-
tification determines a value for X in [1 … N]; open-set speaker
identification determines a value for X in [0, 1 … N], where X = 0 means
‘the unknown speaker S

X
∉S’. ‘Text independent’ means that u

X
is not nec-

essarily contained in any of the Ui.
During the process, acoustic feature sets {F

1
… F

N
} are extracted from

the utterances {U
1
… U

N
}. In the same manner, a feature set F

X
is extracted

from u
X
. A matching algorithm determines which, if any, of {F

1
… F

N
} suf-
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ficiently resembles F
X
. The identification is based on the resemblance and

may be given with a probability-of-error coefficient.
Forensic speaker identification is aimed specifically at an application

area in which criminal intent occurs. This may involve espionage,
blackmail, threats and warnings, suspected terrorist communications, etc.
Civil matters, too, may hinge on identifying an unknown speaker, as in
cases of harassing phone calls that are recorded. Often a law enforcement
agency has a recording of an utterance associated with a crime such as a
bomb threat or a leaked company secret. This is u

X
. If there are suspects

(the set S), utterances are elicited from them (the set U), and an analysis is
carried out to determine the likelihood that one of the suspects was the
speaker of u

X
, or that none of them was. Another common scenario is for

agents to have a wiretap of an unknown person who is a suspect in a
crime, and a set of suspects to test the recording against.

Forensic speaker identification distinguishes itself in five ways. First,
and of primary importance, it must be open-set identification. That is, the
possibility that none of the suspects is the speaker of the criminal exemplar
must be entertained. Second, it must be capable of dealing with very short
utterances, possibly under five seconds in length. Third, it must be able to
function when the exemplar has a poor signal-to-noise ratio. This may be
the result of wireless communication, of communication over low-quality
phone lines, or of data from a ‘wire’ worn by an agent or informant,
among others. Fourth, it must be text independent. That is, identification
must be made without requiring suspects to repeat the criminal exemplar.
This is because the criminal exemplar may be too short for statistically sig-
nificant comparisons. As well, it is generally true that suspects will find
ways of repeating the words so as to be acoustically dissimilar from the
original. Moreover, it may be of questionable legality as to whether a
suspect can be forced to utter particular words. Fifth, the time constraints
are more relaxed. An immediate response is generally not required so
there is time for extensive analysis, and most important in our case, time
for human intervention. The research described below represents work in
progress.

BACKGROUND
The history of electronically assisted speaker identification began with
Kersta (1962), and can be traced through these references: Baldwin and
French (1990), Bolt (1969), Falcone and de Sario (1994), French (1994),
Hollien (1990), Klevans and Rodman (1997), Koenig (1986), Künzel
(1994), Markel and Davis (1978), O’Shaughnessy (1986), Reynolds and
Rose (1995), Stevens et al. (1968) and Tosi (1979). 

Speaker identification can be categorized into three major approaches.
The first is to use long-term averages of acoustic features. Some features
that have been used are inverse filter spectral coefficients, pitch, and
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cepstral coefficients (Doddington 1985). The purpose is to smooth across
factors influencing acoustic features, such as choice of words, leaving
behind speaker-specific information. The disadvantage of this class of
methods is that the process discards useful speaker-discriminating data,
and can require lengthy speech utterances for stable statistics.

The second approach is the use of neural networks to discriminate
speakers. Various types of neural nets have been applied (Rudasi and
Zahorian 1991, Bennani and Gallinari 1991, Oglesby and Mason 1990). A
major drawback to the neural net methods is the excessive amount of data
needed to ‘train’ the speaker models, and the fact that when a new speaker
enters the database the entire neural net must be retrained.

The third approach – the segmentation method – compares speakers
based on similar utterances or at least using similar phonetic sequences.
Then the comparison measures differences that originate with the speakers
rather than the utterances. To date, attempts to do a ‘like phonetic’ com-
parison have been carried out using speech recognition front-ends. As
noted in Reynolds and Rose (1995), ‘It was found in both studies [Matsui
and Furui 1991, Kao et al. 1992] that the front-end speech recognizer pro-
vided little or no improvement in speaker recognition performance
compared to no front-end segmentation.’ 

The Gaussian mixture model (GMM) of speakers described in Reynolds
and Rose (1995) is an implicit segmentation approach in which like sounds
are (probabilistically) compared with like. The acoustic features are of the
mel-cepstral variety (with some other preprocessing of the speech signal).
Their best results in a closed-set test using five second exemplars was
correct identification in 94.5% ±1.8 of cases using a population of 16
speakers (Reynolds and Rose 1995: 80). Open-set testing was not
attempted.

Probabilistic models such as Hidden Markov Models (HMMs) have
also been used for text-independent speaker recognition. These methods
suffer in two ways. One is that they require long exemplars for effective
modelling. Second, the HMMs model temporal sequencing of sounds,
which ‘for text-independent tasks … contains little speaker-dependent
information’ (Reynolds and Rose 1995: 73).

A different kind of implicit segmentation was pursued in Klevans and
Rodman (1997) using a two-level cascading segregating method. Accu-
racies in the high 90s were achieved in closed-set tests over populations
(taken from the TIMIT database) ranging in size from 25 to 65 from
similar dialect regions. However, no open-set results were attempted.

In fact, we believe the third approach – comparing like utterance frag-
ments with like – has much merit, and that the difficulties lie in the speech
recognition process of explicit segmentation, and the various clustering
and probabilistic techniques that underlie implicit segmentation. In
forensic applications, it is entirely feasible to do a manual segmentation
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that guarantees that lexically similar partial utterances are compared. This
is discussed in the following section.

SEMI-AUTOMATIC SPEAKER IDENTIFICATION
Semi-automatic speaker identification permits human intervention at one
or more stages of computer processing. For example, the computer may be
used to produce spectrograms (or any of a large number of similar dis-
plays) that are interpreted by human analysts who make final decisions
(Hollien 1990). 

One of the lessons that has emerged from nearly half a century of com-
puter science is that the best results are often achieved by a collaboration
of humans and computers. Machine translation is an example. Humans
translate better, but slower; machines translate poorly, but faster. Together
they translate both better and faster, as witnessed by the rise in popularity
of so-called CAT (Computer-aided Translation) software packages. (The
EAMT – European Association for Machine Translation – is a source of
copious material on this subject, for example, the Fifth EAMT Workshop
held in Ljubljana, Slovenia in May of 2000.)

The history of computer science also teaches us that while computers
can achieve many of the same intellectual goals as humans, they do not
always do so by imitating human behaviour. Rather, they have their own
distinctly computational style. For example, computers play excellent
chess but they choose moves in a decidedly non-human way.

Our speaker identification method uses computers and humans to
extract isolexemic sound sequences, which are then heavily analysed by
computers alone to extract personal voice traits. The method is appro-
priate for forensic applications, where analysts may have days or even
weeks to collect and process data for speaker identification.

Isolexemic sequences may consist of a single phone (sound); several
phones such as the rime (vowel plus closing consonant(s)) of a syllable
(e.g. the ill of pill or mill); a whole syllable; a word; sounds that span syl-
lables or words; etc. What is vital is that the sequence be ‘iso’ in the sense
that it comes from the same word or words of the language as pronounced
by the speakers being compared. A concrete example illustrates the
concept. The two pronunciations of the vowel in the word pie, as uttered
by a northern American and a southern American, are isolexemic because
they are drawn from the same English word. That vowel, however, will be
pronounced in a distinctly different manner by the two individuals,
assuming they speak a typical dialect of the area. By comparing isolexemic
sequences, the bulk of the acoustic differences will be ascribable to the
speakers. Speech recognizers are not effective at identifying isolexemic
sequences that are phonetically wide apart, nor are any of the implicit seg-
mentation techniques. Only humans, with deep knowledge of the
language, know that pie is the same word regardless of the fact that the
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vowels are phonetically different, and despite the fact that the same pho-
netic difference, in other circumstances, may function phonemically to
distinguish between different words. The same word need not be involved.
We can compare the ‘enny’ of penny with the same sound in Jenny
knowing that differences – some people pronounce it ‘inny’ – will be indi-
vidual, not linguistic. Moreover, the human analyst, using a speech editor
such as Sound ForgeTM, is able to isolate the ‘enny’ at a point in the vowel
where coarticulatory effects from the j and the p are minimal.

In determining what sound sequences are ‘iso’, the analyst need not be
concerned with prosodics (pitch or intonation in particular) because, as we
shall see, the analysis of the spectra is glottal pulse or pitch synchronous,
the effect of which is to minimize the influence of the absolute pitch of the
exemplars under analysis. In fact, one of the breakthroughs in the research
reported here is an accurate means of determining glottal pulse length so
that the pitch synchronicity can hold throughout the analysis of hundreds
of spectra (Rodman et al. 2000).

Isolexemic comparisons cut much more rapidly to the quick than any
other way of comparing the speech of multiple speakers. Even three
seconds of speech may contain a dozen syllables, and two dozen phonetic
units, all of which could hypothetically be used to discriminate among
speakers.

The manual intervention converts a text-independent analysis to the
more effective text-dependent analysis without the artifice of making sus-
pects repeat incriminating messages, which does not work if the talker is
uncooperative in any case, for he may disguise his voice (Hollien 1990:
233). (The disguise may take many forms: an alteration of the rhythm by
altering vowel lengths and stress patterns, switching dialects for multidi-
alectal persons, or faking an ‘accent’.)  

For example, suppose the criminal exemplar is ‘There’s a bomb in
Olympic Park and it’s set to go off in ten minutes.’ Suspects are inter-
viewed and recorded (text independent), possibly at great length over
several sessions, until they have eventually uttered sufficient isolexemic
parts from the original exemplar. For example, the suspect may say ‘we
met to go to the ball game’ in the course of the interview, permitting the
isolexemic ‘[s]et to go’ and ‘[m]et to go’ to be compared (text dependent).
A clever interrogator may be able to elicit key phrases more quickly by
asking pointed questions such as ‘What took place in Sydney, Australia last
summer?’, which might elicit the word Olympics among others. Or
indeed, the interrogator could ask for words directly, one or two at a time,
by asking the suspect to say things like ‘Let’s take a break in ten minutes.’

The criminal exemplar and all of the recorded interviews are digitized
(see below) and loaded into a computer. The extraction of the isolexemic
sequences is accomplished by a human operator using a sound editor such as
Sound ForgeTM. This activity is what makes the procedure semi-automatic.
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FEATURE EXTRACTION
All the speech to be processed is digitized at 22.050 kHz, 16 bit quanti-
zation, and stored in .wav files. This format is suitable for input to any
sound editor, which is used to extract the isolexemes to be analysed. Once
data are collected and the isolexemes are isolated, both from the criminal
exemplar and the utterances of suspects (in effect, the training speech), the
process of feature extraction can begin. 

Feature extraction takes place in two stages. The first is the creation of
‘tracks’, essentially an abbreviated trace of successive spectra. The second
is the measurement of various properties of the tracks, which serve as the
features for the identification of speakers.

Creating ‘tracks’
We discuss the processing of voiced sounds, that is, those in which the
vocal cords are vibrating throughout. The processing of voiceless sounds is
grossly similar but differs in details not pertinent to this article. (The inter-
ested reader may consult Fu et al. 1999.) Our method requires the
computation of an average spectrum for each glottal pulse (GP) – opening
and closing of the vocal cords – in the speech signal of the current
isolexeme. We developed an algorithm for the accurate computation of the
glottal pulse period (GPP) of a succession of GPs. The method, and the
mathematical proofs that underlie it, and a comparison with other
methods, are published as Rodman et al. (2000). 

By using a precise, pitch synchronous Fourier analysis, we produce
spectral shapes that reflect the shape of the vocal tract, and are essentially
unaffected by pitch. In effect, we treat the vocal tract as a filter that is
driven by the glottal pulse, which is treated as an impulse function. The
resulting spectra are highly determined by vocal tract shapes and glottal
pulse shapes (not spacing). These shapes are speaker dependent and this
provides the basis for speaker identification.

We use spectral moments as representative values of these spectral
shapes. We use them as opposed, say, to formant frequencies, because they
contain information across the entire range of frequencies up to 4 kHz for
voiced sounds, and 11 kHz for voiceless sounds (not discussed in this
article). The higher formants, and the distribution of higher frequencies in
general, have given us better results than in our experiments with pure
formant frequencies and even with moments of higher orders (Koster
1995). 

Knowing the GPP permits us to apply the following steps to compute a
sequence of spectral moments.

(Assume the current GPP contains N samples.)
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1. Compute the discrete Fourier transform (DFT) using a window width
of N, thus transforming the signal from the time domain to the fre-
quency domain.

2. Take the absolute value of the result (so the result is a real number).
3. Shift over 1 sample.
4. Repeat steps 1–3 N times.
5. Average the N transforms and scale by taking the cube root to reduce

the influence of the first formant, drop the DC term, and interpolate it
with a cubic spline to produce a continuous spectrum.

6. Convert the spectrum to a probability density function by dividing it by
its mass, then calculate the first moment m

1
(mean) and the second

central moment about the mean m
2

(variance) of that function in the
range of 0 to 4000 Hz and put them in two lists L

1
and L

2
. Let S(f) be

the spectrum. The following formulae are used, appropriately modified
for the discrete signal:

7. Repeat Steps 1 through 6 until less than 3N samples remain.
8. Scale each moment: m

1
by 10-3 and m

2
by 10-6.

Several comments about the algorithm are in order. The shifting and aver-
aging in Steps 1–3  are effective in removing noise resulting from small
fluctuations in the spectra, but preserving idiosyncratic features of the
vocal tract shape. Although the window spans the length of two glottal
pulses as it slides across, there is one spectral shape computed per glottal
pulse. The overlapping windows improve the sensitivity of the method.
The process is computationally intense but it yields track points that are
reliable and consistent in distinguishing talkers. The procedure also
removes the pitch as a parameter affecting the shape of the transform, as
noted above. 
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In Step 5 the cube root is taken – at one time we took the logarithm –
because the first formant of voiced speech contains a disproportionate
amount of the spectral energy. The effect of taking the cube root ‘levels’
the peaks in the spectrum and renders the spectrum more sensitive to
speaker differences. The means and variances of Step 6 are chosen as
‘figures of merit’ for the individual spectra. Although representing a single
spectrum over a 4 kHz bandwidth with two numbers appears to give up
information, it has the advantage of allowing us to track every spectrum in
the isolexeme and to measure the changes that occur. This dynamism leads
to features that we believe to be highly individuating because they capture
the shape, position and movement of the speaker’s articulators, which are
unique to each speaker. (This is argued in more detail in Klevans and
Rodman 1997.) Also in Step 6, the division by the spectral mass removes
the effect of loudness, so that two exemplars, identical except for intensity,
will produce identical measurements. Finally, the scaling in Step 8 is per-
formed so that we are looking at numbers in [0, 3] for both means and
variances. This is done as a matter of convenience. It makes the resulting
data more readable and presentable.

The result of applying the algorithm is a sequence of points in two-
dimensional m

1
-m

2
space that can be interpolated to give a track. These are

the values from the lists L
1

and L
2
. The tracks are smoothed by a three-

stage cascading filter: median-5, average-3, median-3. That is, the first
pass replaces each value (except endpoints) with the median of itself and
the four surrounding values. The second pass takes that median-5 output
and replaces each point by the average of itself with the two surrounding
values. That output is subjected to the median-3 filter to give the final,
smoothed track. The smoothing takes place because the means and vari-
ances of the spectra make small jumps when the speech under analysis is in
a (more or less) steady state as in the pronunciation of vowels. This is true
especially for monophthongal vowels such as the ‘e’ in  bed, but even in
diphthongs such as the ‘ow’ in cow, there are steady states that span
several glottal pulse periods. The smoothing removes much of the irrel-
evant effect of the jumps. (See also Fu et al. 1999, Rodman et al. 1999.)

A visual impression of intra- and interspeaker variation may be seen in
Figure 1. The first two tracks in the figure are a single speaker saying owie
on two different occasions. The third and fourth tracks in the figure are
two different speakers saying owie. Figures 2 and 3 are similar data for the
utterances ayo and eya.

Our research shows that the interspeaker variation of tracks of
isolexemic sequences will be measurably larger than the intraspeaker vari-
ation, and therefore that an unknown speaker can be identified through
these tracks. 
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Extracting features from tracks
To compare tracks, several factors must be considered: the region of
moment space occupied by the track; the shape of the track; the centre of
gravity of the track; and the orientation of the track. Each of these charac-
teristics displays larger interspeaker than intraspeaker variation when
reduced to statistical variables. One way to extract variables is to surround
the track by a minimal enclosing rectangle (MER), which is the rectangle
of minimal area containing the entire track. The MER is computed by
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Figure 1 The first two plots are the same speaker saying ‘owie’; the third
and fourth plots are different speakers saying ‘owie’

Figure 2 The first two plots are the same speaker saying ‘ayo’; the third
and fourth plots are different speakers saying ‘ayo’

Figure 3 The first two plots are the same speaker saying ‘eya’; the third
and fourth plots are different speakers saying ‘eya’
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rotating the track about an endpoint one degree at a time and computing
the area of a bounding rectangle whose sides are parallel to the axes each
time, and then taking the minimum. The minimum is necessarily found
within 90 degrees of rotation. This is illustrated in Figure 4.

From the MER of the curve in its original orientation, we extract four
of the ten variables to be used to characterize the tracks, viz. the x-value of
the midpoint, the y-value of the midpoint, the length of the long side (L),
and the angle of orientation (α). (The length of the short side was not an
effective discriminator for this study.)  Four more variables are the
minimal x-coordinate, the minimal y-coordinate, the maximal x-coor-
dinate, and the maximal y-coordinate of the track. They are derived by
surrounding the track in its original orientation with a minimal rectangle
parallel to the axes and taking the four corner points. These eight para-
meters measure the track’s location and orientation in moment space.

The final two variables attempt to reflect the shape of the track. Note
that the spacing and number of track points in an utterance depend on the
fundamental pitch. The higher the frequency the fewer the number of
samples in the period and hence the greater the number of track points
that will be computed over a given time period. To obviate this remaining
manifestation of pitch and hence, the number of track points, as a factor
affecting the measurement of the shape of a curve, we reparameterize the
curve based on the distance between track points. We normalize the
process so that the curve always lies in the same interval thus removing
track length as a factor. (Other variables take it into account.)

More particularly, we parameterize the tracks in m
1
-m

2
space into two

integrable curves by plotting the m
1
-value of a point p (the ordinate) versus

the distance in m
1
-m

2
space to point p+1 (abscissa), providing the distance

exceeds a certain threshold. If it does not, the point p+1 is thrown out and
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Figure 4 A minimal enclosing rectangle
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the next point taken, and so on until the threshold is exceeded. The
abscissa is then normalized to [0, 1] and the points interpolated into a
smooth curve by a cubic spline. This is known as a normalized arc length
parameterization. A second curve is produced via the same process using
the m

2
-value of the point p. The two quadrature-based variables are calcu-

lated by integrating each curve over the interval [0, 1]. 
The ten variables are most likely not completely independent. With a

data set of this size, it is nearly impossible to estimate the correlations
meaningfully. The first eight variables were selected through exploratory
analysis to characterize the MER. The last two variables are related to the
shape of the track as opposed to its location and orientation in m

1
-m

2

space and are therefore likely to have a high degree of independence from
the other eight.

Figures 5A–C illustrate the discriminatory power of these variables.
Figures 5A and 5B represent two different utterances of ayo by speaker JT.
The first plot in each figure is the track in moment space. The second and
third plots are the normalized arc length parameterizations for m

1
and m

2
.

(The actual variable used will be the quadrature of these curves.) The sim-
ilarity in shape of corresponding plots for the same-speaker utterances is
evident. Figure 5C is the set of plots for the utterance of ayo by speaker
BB. The different curve shapes in Figure 5C indicate that a different
person spoke. 
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Figure 5A JT speaking ayo-1: the m
1
-m

2
track, the normalized arc length

parameterization of m
1
, the normalized arc length parameteri-

zation of m
2
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A CASE STUDY

The experiment
From an imagined extortion threat containing ‘Now we see about the
payola’, we identified three potential isolexemes: owie, eya, and ayo, as
might be isolated from the underlined parts of the exemplar. Single utter-
ances of owie, eya, and ayo were extracted from the speech of ten
unknown speakers. The set consisted of eight males of whom five were
native speakers of American English, and three were near accent-less
fluent English speakers whose native language was Venezuelan Spanish.
The two females were both native speakers of American English. This is
the testing database. We then asked the ten speakers – BB, BS, DM, DS, JT,
KB, LC, NM, RR, VN – to utter owie, eya, and ayo four times to simulate
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Figure 5B JT speaking ayo-2: the m
1
-m

2
track, the normalized arc length

parameterization of m
1

the normalized arc length parameteri-
zation of m

2

Figure 5C BB speaking ayo: the m
1
-m

2
track, the normalized arc length

parameterization of m
1
, the normalized arc length parameteri-

zation of m
2



the results of interrogations in which those sounds were extracted from
the elicited dialogue. This is the training database. All the speech samples
were processed to create tracks as described in the ‘Creating “tracks”’ sub-
section above.

The objective of the experiment is to see if the 10 features described in
the previous subsection are useful in discriminating among individuals.
The approach of using several variables to distinguish between groups or
classes is referred to as discriminant analysis. (See, for example, Mardia et
al. 1997.) As mentioned in the ‘Background’ section above, many authors
have employed methods such as neural networks and hidden Markov
models to discriminate between individuals. (See Klevans and Rodman
(1997) for a general discussion.)  A disadvantage of these methods is that
they require a large amount of training data. We present a fairly simple dis-
criminant analysis, which is easily implemented and can be used with a
small amount of training data. 

Determining effective discriminators
The set of variables described in the ‘Extracting features from tracks’ sub-
section above seemed to capture important features of the ayo, eya and
owie tracks. We therefore used an analysis of variance (ANOVA) to
confirm that these variables are effective in discriminating between indi-
viduals. ANOVA is a method of comparing means between groups (see, for
example, Snedecor and Cochran 1989). In this case, a group is a set of
replicates from an individual. If the mean of a feature varies across indi-
viduals, then this variable may be useful for discriminating between at least
some of the individuals. In an ANOVA, the F-statistic is the ratio of the
interspeaker variation to the intraspeaker variation. If this ratio is large
(much larger than one), then we conclude that there is a significant dif-
ference in feature means between individuals. 

Table 1 contains the F-statistics for each of the ten variables described in
the ‘Extracting features from tracks’ subsection. In this analysis, each
variable is considered separately, so the F-statistic is a measure of a
variable’s effectiveness in distinguishing individuals when used alone. For
these data an F-statistic larger than 2.2 can be considered large, meaning
the variable will be a good discriminator. Note that a large F-value does
not imply that we can separate all individuals well using the single feature;
however, it will be useful in separating the individuals into at least two
groups. All of the variables discussed in the ‘Extracting features from
tracks’ subsection  have a large F-statistic. (Indeed, we used the F-statistic
to eliminate as ineffective such potential variables as the length of the
short side of the MER.) 
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Table 1 F-statistics for each variable

VARIABLE NAME AYO EYA OWIE

Midpoint-x 14.93 34.09 19.56
Midpoint-y 23.25 39.52 33.78
Long side 9.30 13.27 4.61
Alpha 7.66 2.31 4.61
Maximum-x 18.31 6.02 12.61
Minimum-x 13.51 16.11 20.83
Maximum-y 11.95 57.17 18.90
Minimum-y 19.89 18.85 49.11
Mean Quadrature 34.14 32.13 30.77
Variance Quadrature 65.44 48.75 67.49

Measures of similarity
Having determined that all ten features are useful for all three sounds, the
discriminant analysis will be based on these 30 variables. Let yi be the 30-
dimensional vector of sample means for speaker i. In our training
database, this mean is based on four repetitions for each speaker. It will be
easy to discriminate between individuals if the yi’s are ‘far apart’ in 30-
dimensional space. One way to measure the distance between means is to
use Euclidean distance. However, this metric is not appropriate in this sit-
uation because it does not account for differing variances and covariances.
For example, a change in one unit of the angle of orientation variable α is
not equivalent to a change of one unit of a quadrature-based variable.
Also, with a one-unit change in maximum-y, we might expect a change in
minimum-y or the long side variables. Mahalanobis distance is a metric
that accounts for variances and covariances between variables (see, for
example, Mardia et al. 1979). 

Let ∑ be the 30x30 dimensional covariance matrix. We will partition ∑
into nine 10x10 matrices, six of which are distinct. The matrix has the
form

For example, the submatrix ∑
ΑΑ  

represents the covariance matrix of the ten
variables associated with the ayo sound. The submatrix ∑

ΑΕ  
represents the

covariance matrix of the ten ayo variables and the ten eya variables. We
make two assumptions about the structure of this matrix. First, we assume
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that the diagonal submatrices are constant for all individuals, so that ∑
ΑΑ

∑
ΕΕ  

and ∑
ΟΟ

can be estimated by pooling the corresponding sample
covariance matrices across individuals. This is a fairly strong assumption,
but with the size of the training data set, we cannot reliably estimate these
matrices separately for each individual without making even more
stringent distributional assumptions. 

Secondly, we assume that ∑ has a block diagonal structure. That is, the
matrices ∑

ΑΕ
, ∑

ΑΟ
and ∑

ΕΟ
are assumed to be matrices of zeros. This is also

a strong assumption, but again, the size of the training data set does not
allow for reliable estimation of these submatrices. Let ∑̂ be the estimate of
∑ using the zero matrices and estimated matrices described above.  The
squared Mahalanobis distance between individuals i and j is

Table 2 contains squared Mahalanobis distances for the ten individual
means in the training database. The lower triangle of the table is blank
because these cells are redundant. Relatively small distances indicate that
the individuals are similar with the respect to the variables used in the
analysis. For example, the most similar individuals are KB and NM (the
two female speakers) while the most dissimilar are DM and RR (both
native speakers of American English).

Table 2 Squared Mahalanobis distances between individual means

Individual BB BS DM DS JT KB LC NM RR VN

BB 0 178 589 165 346 194 107 341 277 132
BS 0 322 228 192 148 224 202 271 145
DM 0 637 243 258 670 134 708 642
DS 0 533 215 137 259 387 112
JT 0 216 406 179 447 467
KB 0 285 98 475 248
LC 0 427 169 119
NM 0 586 374
RR 0 297
VN 0
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Classifying exemplars
For features extracted from a set of three utterances (ayo, eya, owie) from
a speaker, we can calculate the squared Mahalanobis distance from the
exemplar to each individual mean by

For the closed-set problem, we identify Sx by choosing the individual mean
to which yx is closest. We first tested this identification rule on each
exemplar in the training set. The rule correctly identified the speaker for
all training exemplars. We would expect to have a low error rate in this
case, since each exemplar was also used in estimating y

i
and ∑

∧
.  

The rule was also applied to unknowns 1–7 in the testing database. These
exemplars came from speakers in the training set. (Unknowns 8–10 were
‘ringers’ introduced for the open-set test. They consisted of one male and
two female native speakers of American English, replacing one female and
one male native speaker of American English, and one male speaker whose
native language was Venezuelan Spanish.) Table 3 contains the squared
Mahalanobis distances from each yx to each individual mean. Each speaker
was identified correctly. For each unknown(1–7), the minimum distance is less
than 100, except for Unknown 6. The asterisk marks the minimum distance
for unknowns 8–10. The minimum distances are lower, in general, than the
interspeaker distances given in Table 2. This confirms that this set of vari-
ables is useful for discriminating between individuals.  Also, the distances
from each speaker in the test set seem to follow approximately the same
trends as in Table 2. For example, in the training data, DM was the most dis-
similar to BB. For Unknown 1 (BB), the largest distance is to DM.

In many cases, it will be desirable to report not only the individual
selected by the rule, but also to provide an estimate of the reliability of the
procedure. The reliability may be determined empirically. We may use the
observed error rate for the closed-set classification rule when applied to
the training data and test speakers 1–7. Cross-validation can also be used
to estimate error rates. However, due to the size of the study, neither
method will provide a reasonable estimate of reliability of the procedure.
Another method of estimating reliability would be to make distributional
assumptions, e.g. multivariate normality. Any such assumptions would be
difficult to verify with such a small data set. Developing a framework for
estimating the reliability of such a procedure with a small data set is
planned for future work.

For the open-set problem, the rule must be modified to allow us to con-
clude that the unknown speaker is not in the training set (X=0) One way
of modifying this rule would be to establish a distance threshold. If none
of the distances M

xi
fall below this threshold, then we conclude X=0.  As in

the closed-set problem, estimates of reliability are desirable. In general,
error rates will depend on the choice of the threshold. 
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We investigated empirical choices of thresholds for this experiment. For
the test data set, if we choose a distance threshold, we will misclassify at
least one of the ten unknowns. For example, if we choose a distance
threshold of 100, Unknown 6 will be incorrectly assigned to So and
Unknown 9 will be incorrectly classified as KB. In this testing situation, we
can pick a distance threshold that minimizes the number of misclassifi-
cation errors. However, this will not be possible in a practical situation. A
framework for choosing thresholds for the open-set problem is planned
for future work.

SUMMARY AND FUTURE DIRECTIONS
The results we obtained are encouraging because of the sparseness of data.
The known speakers had about 8–12 seconds of speech data per speaker.
The unknowns had one-quarter of that amount, 2–3 seconds. In an actual
forensic situation there is an excellent likelihood of having many times the
amount of data for the criminal exemplar (unknown speaker), and as
much data as needed for suspects (known speakers). 

The identification process is cumulative in nature. As additional data
become available, there is more information for individuating speakers,
and the error probabilities diminish. In practice the only limitation is the
amount of data in the criminal exemplar (the testing data). Often, author-
ities are able to collect as large an amount of training data as needed. Each
new sound sequence that undergoes analysis makes its small contribution
to the overall discrimination. In even as short an utterance as ‘There’s a
bomb in Olympic Park and it’s set to go off in ten minutes’ there are easily
a dozen or more sequences that may be extracted for analysis. Thus we are
sanguine about the ability of this method to work in practice.
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Table 3 Squared Mahalanobis distances between unknowns and indi-
vidual means

Unknown BB BS DM DS JT KB LC NM RR VN

1-BB 7 2 157 595 303 324 228 141 357 212 171
2-BS 222 3 7 398 273 295 177 262 250 327 145
3-DM 539 298 4 6 603 261 246 601 129 685 551
4-DS 263 327 643 5 4 621 237 212 422 542 248
5-JT 326 176 213 489 6 8 211 406 183 406 435
6-KB 187 140 394 277 260 122 319 190 437 241
7-NM 278 191 153 335 239 65 400 2 7 596 325
8-RB 198 213 276 271 199 126* 184 298 280 294
9-SG 119 91 294 188 241 66* 179 163 347 150
10-TM 221 140* 452 364 215 234 173 308 154 222
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When the case study is regarded as closed-set speaker identification, the
system performed without error. While it is unreal to expect zero error
rates in general, the results forecast a relatively low error rate in cases of
this kind. Many practical scenarios require only closed-set identification.
For example, in a corporate espionage case, where a particular phone line
is tapped, there are a limited number of persons who have access to that
phone line. Similar cases are described in Klevans and Rodman (1997).

The more difficult and more general open-set identification yielded
error rates between 10 and 20 per cent depending on how thresholds are
set. Our current research is strongly concerned with reducing this error
rate.

Future research: short term
Our research in this area is expanding in three directions. The first is to
use a larger quantity of data for identification. Simplistically, this might
have ten repetitions of ten vowel transitional segments similar to owie for
the training database. It is expected that the F-values of the variables
would rise, meaning that the ratio of interspeaker variation to intraspeaker
variation will climb. At one time we used only three utterances per sound
per speaker in the training base and when we went to four utterances the
F-values increased significantly, which validates our expectation. (Natu-
rally this implies lengthier interrogating sessions in a forensic application,
but when a serious crime is involved, the extra effort may be justified.)

The second direction is to use more phonetically varied data. The vowel
transitions of this study were chosen primarily to determine if the method-
ology was promising. They do not span the entire moment space
encompassed by the totality of speech sounds. There are speech sounds
such as voiced fricatives that produce tracks that extend beyond the union
of the MERs for the above utterances. Moreover, we are also able to
process voiceless sounds to produce moment tracks, but using a different
processing method that analyses the speech signal at frequencies up to 11
kHz (Fu et al. 1999). We are also able to process liquid [l], [r] and nasal
sounds [m], [n], [nj], [N]. We hypothesize that the use of other transitions,
for example, vowel-fricative-vowel as in lesson, will increase the discrimi-
natory power of the method because it ‘views’ a different aspect of the
speaker’s vocal tract. An interesting, open, minor question is whether par-
ticular types of sequences (e.g. vowel-nasal-vowel, diphthong alone, etc.)
will be more effective discriminators than others. 

We are currently moving from producing our own data to using stan-
dardized databases such as those available from the Linguistic Data
Consortium. While this makes the data extraction process more difficult
and time-consuming, it has the advantage of providing test data of the
kind encountered in actual scenarios, particularly if one of the many tele-
phone-based databases are used.
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The third direction is to find more and better discriminating variables.
Eight of the ten variables are basically ‘range statistics’, a class of statistics
well known for their lack of robustness and extreme sensitivity to outliers,
and as noted above, are not entirely, mutually independent. Both more and
varied data would obviate these shortcomings, but what is truly needed is
a more precise measurement of curve shape, since the shape appears to be
highly correlated to the speaker.                       

We are experimenting with methods to characterize the shape of a
curve. The visual appearance of the shape of tracks for a given speaker for
a given utterance, and the differences between the shapes of the tracks
among speakers for the same utterance, suggest that curve shape should be
used for speaker identification. 

Curvature scale space (Mokhtarian and Mackworth 1986, Mokhtarian
1995, Sonka et al. 1999) is a method that has been proposed to measure
the similarity of 2D curves for the purpose of retrieving curves of similar
shape from a database of planar curves. 

The method tries to quantify shape by smoothing the curve (the scaling
process) and watching where the curvature changes sign. When the scaling
process produces no more curvature changes, the resulting behaviour
history of the changes throughout the smoothing process is used to do
curve matching (Mokhtarian 1995). We are currently exploiting this
methodology to extract variables that are linked to the shape of the
moment tracks in m

1
-m

2
space. These variables should provide discrimi-

nating power highly independent of the variables currently in use, and
hence would improve the effectiveness of the identification process.

Other methods for exploiting shape differences are also being con-
sidered. Matching shapes, while visually somewhat straightforward, is a
difficult problem to quantify algorithmically and methods for its solution
have only recently begun to appear in the literature.

Future research: long term
Our long-term future research is also pointed in three slightly different
directions. They are (1) noisy data, (2) channel impacted data, and (3) dis-
guised voice data. All three of these data-distorting situations may
compromise the integrity of a speaker identification system based on
‘clean’ data. A system for practical use in a forensic setting would need
methods for accommodating to messy data. This is a vast and complex
topic, and most of the work needed would necessarily follow the devel-
opment of the speaker identification system as used under less
unfavourable circumstances.
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