Tracking the Cold

Remote Sensing for Glacial Archaeology


  • Gino Caspari The University of Bern



remote sensing, ice patches, melt monitoring,, SAR, NDSI, glacial archaeology


In recent years airborne and spaceborne remote sensing have developed into a widely applied tool for archaeologists. In glacial archaeology, it has been employed successfully, but could see a wider application among practitioners. This article summarizes common remote sensing approaches useful to archaeologists in cryogenic environments. It covers simple applications using easily accessible data in order to enable the practitioner to monitor melt and contextualize archaeological sites within a larger landscape setting. The improved resolution and availability of remote sensing data enhances its usefulness with regards to identifying, documenting and monitoring sites in frozen environments and is a valuable addition to most field research pertaining to glacial archaeology.

Author Biography

Gino Caspari, The University of Bern

Gino Caspari (Ph.D.) is a Postdoc Mobility Fellow of the Swiss National Science Foundation and an Honorary Research Associate at Sydney University and University of Bern. He focuses on field archaeology, human environmental interaction, as well as remote sensing and geospatial analysis.


Adams, R. E., W. E. Brown and T. P. Culbert. 1981. “Radar mapping, archeology, and ancient Maya land use.” Science 213(4515): 1457–1468. DOI:

Ambach, W. and A. Denoth. 1972. “Studies on the dielectric properties of snow.” Zeitschrift für Gletscherkunde und Glazialgeologie 8(1-2): 113–123.

Andrews, T. D. and G. MacKay. 2012. “The Archaeology and Paleoecology of Alpine Ice Patches: A Global Perspective.” Arctic iii–vi. DOI:

Ashcraft, I. S. and D. G. Long. 2006. “Comparison of methods for melt detection over Greenland using active and passive microwave measurements.” International Journal of Remote Sensing 27(12): 2469–2488. DOI:

Balz, T., G. Caspari, B. Fu and M. Liao. 2016. “Discernibility of burial mounds in high-resolution X-Band SAR images for archaeological prospections in the Altai Mountains.” Remote sensing 8(10): 817. DOI:

Ben-Dor, E., M. Kochavi, L. Vinizki, M. Shionim and J. Portugali. 2001. “Detection of buried ancient walls using airborne thermal video radiometry.” International Journal of Remote Sensing 22(18): 3689–3702. DOI:

Brooke, C. 2018. “Thermal imaging for the archaeological investigation of historic buildings.” Remote Sensing 10(9): 1401. DOI:

Cagnati, A., A. Crepaz, G. Macelloni, P. Pampaloni, R. Ranzi, M. Tedesco, M. Tomirotti and M. Valt. 2004. “Study of the snow melt–freeze cycle using multi-sensor data and snow modeling.” Journal of Glaciology 50(170): 419–426. DOI:

Campana, S. 2017. “Drones in archaeology. State-of-the-art and future perspectives.” Archaeological Prospection 24(4): 275–296. DOI:

Casana, J., J. Kantner, A. Wiewel and J. Cothren. 2014. “Archaeological aerial thermography: a case study at the Chaco-era Blue J community, New Mexico.” Journal of Archaeological Science 45: 207–219. DOI:

Caspari, G. and P. Crespo. 2019. “Convolutional neural networks for archaeological site detection–Finding “princely” tombs.” Journal of Archaeological Science 110: 104998. DOI:

Caspari, G., T. Sadykov, J. Blochin and I. Hajdas. 2018. “Tunnug 1 (Arzhan 0)–an early Scythian kurgan in Tuva Republic, Russia.” Archaeological Research in Asia 15: 82–87. DOI:

Caspari, G., T. Sadykov, J. Blochin, M. Buess, M. Nieberle and T. Balz. 2019. “Integrating remote sensing and geophysics for exploring early nomadic funerary architecture in the ‘siberian valley of the kings’.” Sensors 19(14): 3074. DOI:

Caspari, G., J. Blochin, T. Sadykov and T. Balz. 2020. “Deciphering Circular Anthropogenic Anomalies in PALSAR Data—Using L-Band SAR for Analyzing Archaeological Features on the Steppe.” Remote Sensing 12(7): 1076. DOI:

Chase, A. F., D. Z. Chase, J. J. Awe, J. F. Weishampel, G. Iannone, H. Moyes, J. Yaeger and M. K. Brown. 2014. “The use of LiDAR in understanding the ancient Maya landscape: Caracol and western Belize.” Advances in Archaeological Practice 2(3): 208–221. DOI:

Ceraudo, G. 2016. “Aerial photography in archaeology.” In Good Practice in Archaeological Diagnostics, edited by C. Corsi, B. Slapsak, and F. Vermeulen, 11–30. Cham: Springer. DOI:

Cigna, F., D. Tapete, R. Lasaponara and N. Masini. 2013. “Amplitude change detection with ENVISAT ASAR to image the cultural landscape of the Nasca Region, Peru.” Archaeological Prospection 20(2): 117–131. DOI:

Davis, D. S. and K. Douglass. 2020. “Aerial and spaceborne remote sensing in African archaeology: A review of current research and potential future avenues.” African Archaeological Review: 1–16. DOI:

Deems, J. S., T. H. Painter and D. C. Finnegan. 2013. “Lidar measurement of snow depth: a review.” Journal of Glaciology 59(215): 467–479. DOI:

Dixon, E. J., M. E. Callanan, A. Hafner and P. G. Hare. 2014. “The emergence of glacial archaeology.” Journal of Glacial Archaeology 1: 1–9. DOI:

DLR. 2020. “Proposal Submission Procedure - TanDEM-X DEM – DLR.” Last modified April 20, 2020.

Dozier, J., R. O. Green, A. W. Nolin and T. H. Painter. 2009. “Interpretation of snow properties from imaging spectrometry.” Remote Sensing of Environment 113: 25–37. DOI:

Duguay, C. R., T. Zhang, D. W. Leverington and V. E. Romanovsky. 2005. “Satellite remote sensing of permafrost and seasonally frozen ground.” Geophysical Monograph Series 163: 91. DOI:

Elachi, C. 1982. “Radar images of the earth from space.” Scientific American 247(6): 54–61. DOI:

Evans, D. H., R. J. Fletcher, C. Pottier, J.-B. Chevance, D. Soutif, B. S. Tan, S. Im, D. Ea, T. Tin, S. Kim, C. Cromarty, S. De Greef, K. Hanus, P. Bâty, R. Kuszinger, I. Shimoda and G. Boornazian. 2013. “Uncovering archaeological landscapes at Angkor using lidar.” Proceedings of the National Academy of Sciences 110(31): 12595–12600. DOI:

Foster, J. L., C. Sun, J. P. Walker, R. Kelly, A. Chang, J. Dong and H. Powell. 2005. “Quantifying the uncertainty in passive microwave snow water equivalent observations.” Remote Sensing of Environment 94(2): 187–203. DOI:

Gardner, A. S. and M. Sharp. 2009. “Sensitivity of net mass-balance estimates to near-surface temperature lapse rates when employing the degree-day method to estimate glacier melt.” Annals of Glaciology 50(50): 80–86. DOI:

GLAMOS. 2019a. “Swiss Glacier Length Change, release 2019.” Glacier Monitoring Switzerland doi:10.18750/lengthchange.2019.r2019.

———. 2019b. “Swiss Glacier Mass Balance, release 2019.” Glacier Monitoring Switzerland, doi:10.18750/massbalance.2019.r2019.

———. 2019c. “Swiss Glacier Volume Change, release 2019.” Glacier Monitoring Switzerland, doi:10.18750/volumechange.2019.r2019.

Grodecki, J. and G. Dial. 2002. “IKONOS geometric accuracy validation.” International Archives of Photo-grammetry Remote Sensing and Spatial Information Sciences 34(1): 50–55.

GSL. 2020. “Global Snow Lab, Rutgers University” Last modified July 26, 2020.

Goossens, R., A. De Wulf, W. Gheyle, and J. Bourgeois. 2006. “Estimation of the permafrost area in the Altai Mountains (Russia) in the framework of the preservation of the frozen tombs of the Altai Mountains.” Global Developments in Environmental Earth Observation from Space: Proceedings of the 25th Symposium of the European Association for Remote Sensing Laboratories: 595-601.

Hachem, S., C. R. Duguay and M. Allard. 2012. “Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain.” The Cryosphere 6(1): 51. DOI:

Hall, D. K., G. A. Riggs and V. V. Salomonson. 1995. “Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data.” Remote Sensing of Environment 54(2): 127–140. DOI:

Hall, D. K., R. S. Williams Jr, K. A. Casey, N. E. Di Girolamo and Z. Wan. 2006. “Satellite-derived, meltseason surface temperature of the Greenland Ice Sheet (2000–2005) and its relationship to mass balance.” Geophysical Research Letters 33(11): 1–5. DOI:

Jeong, N., H. Hwang and E. T. Matson. 2018. “Evaluation of low-cost lidar sensor for application in indoor UAV navigation.” IEEE Sensors Applications Symposium: 1–5. DOI:

Jia, P., G. Caspari, A. Betts, B. Mohamadi, T. Balz, H. Shen, Q. Meng and D. Cong. 2020. “Seasonal Movements of Bronze Age Transhumant Pastoralists in Western Xinjiang.” PlosOne, 15.11: e0240739. DOI:

Klein, A. G., D. K. Hall and G. A. Riggs. 1998. “Global snow cover monitoring using MODIS.” Information for sustainability: 363–366

Kobler, A., N. Pfeifer, P. Ogrinc, L. Todorovski, K. Oštir, and S. Džeroski. 2007. “Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain.” Remote sensing of environment 108(1): 9–23. DOI:

Lasaponara, R. and N. Masini. 2013. “Remote sensing in archaeology: An overview.” Journal of Aeronautics and Space Technologies 6(1): 7–17.

Linck, R., T. Busche, S. Buckreuss, J.W.E. Fassbinder and S. Seren. 2013. “Possibilities of archaeological prospection by high-resolution X-band satellite radar–a case study from Syria.” Archaeological Prospection 20(2): 97–108. DOI:

Lindsay, C., J. Zhu, A. E. Miller, P. Kirchner and T. L. Wilson. 2015. “Deriving snow cover metrics for Alaska from MODIS.” Remote Sensing, 7(10): 12961–12985. DOI:

Lundén, B. 1985. “Aerial Thermography—A Remote Sensing Technique Applied to Detection of Buried Archaeological Remains at a Site in Dalecarlia, Sweden.” Geografiska Annaler: Series A, Physical Geography 67(1–2): 161–166. DOI:

MODIS. 2020. “MOD10A2 / MYD10A2 snow products.” Last modified January 17, 2020.

Molodín, V. I., H. Parzinger, D. Ceveemdorz, J. N. Garkusa and A. E. Grisin. 2008. “Das skythenzeitliche kriegergrab aus Olon-Kurin-Gol Neue Entdechungen in der Permafrostzone des mongolischen Altaj: Vorberich der russisch-deutsch-monogolischen Expedition im Sommer 2006.“ Eurasia antiqua: Zeitschrift für Archäologie Eurasiens 14: 241–265.

Moreira, A., G. Krieger, I. Hajnsek, D. Hounam, M. Werner, S. Riegger and E. Settelmeyer. 2004. “TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry.” IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium 2: 1000–1003. DOI:

Munkhjargal, M., S. Groos, C. G. Pan, G. Yadamsuren, J. Yamkin, J. and L. Menzel. 2019. “Multi-Source Based Spatio-Temporal Distribution of Snow in a Semi-Arid Headwater Catchment of Northern Mongolia.” Geosciences 9(53). DOI:

Nagler, T., H. Rott, E. Ripper, G. Bippus and M. Hetzenecker. 2016. “Advancements for snowmelt monitoring by means of sentinel-1 SAR.” Remote Sensing 8(4): 348. DOI:

Pan, C. G., P. B. Kirchner, J. S. Kimball and J. Du. 2020. “A Long-Term Passive Microwave Snowoff Record for the Alaska Region 1988–2016.” Remote Sensing 12: 1–23. DOI:

Parcak, S. H. 2009. Satellite Remote Sensing for Archaeology. London: Routledge. DOI:

Piras, M., G. Taddia, M. G. Forno, M. Gattiglio, I. Aicardi, P. Dabove, S. Lo Russo and A. Lingua. 2017. “Detailed geological mapping in mountain areas using an unmanned aerial vehicle: application to the Rodoretto Valley, NW Italian Alps.” Geomatics, Natural Hazards and Risk 8(1): 137–149. DOI:

Poirier, N., F. Hautefeuille, and C. Calastrenc. 2013. “Low altitude thermal survey by means of an automated unmanned aerial vehicle for the detection of archaeological buried structures.” Archaeological Prospection 20(4): 303–307. DOI:

Polosmak, N. V. 1995. “The Ak-Alakh Frozen Grave Barrow.” Ancient Civilizations from Scythia to Siberia 1(3): 346–354. DOI:

Pulliainen, J. 2006. “Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations.” Remote Sensing of Environment 101(2): 257–269. DOI:

Racoviteanu, A. E., F. Paul, B. Raup, S. J. S. Khalsa and R. Armstrong. 2009. “Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA.” Annals of Glaciology 50(53): 53–69. DOI:

Reckin, R. 2013. “Ice patch archaeology in global perspective: archaeological discoveries from alpine ice patches worldwide and their relationship with paleoclimates.” Journal of World Prehistory 26(4): 323–385. DOI:

Riggs G. A. and D. K. Hall. 2015. “MODIS Snow Products Collection 6 User Guide.” Last modified December 11, 2015.

Rozenstein, O., Z Qin, Y. Derimian and A. Karnieli. 2014. “Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm.” Sensors 14(4): 5768–5780. DOI:

Roy, D. P., M. A. Wulder, T. R. Loveland, C. E. Woodcock, R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne and Z. Zhu. 2014. “Landsat-8: Science and product vision for terrestrial global change research.” Remote sensing of Environment 145: 154–172. DOI:

Rudenko, S. I. 1970. Frozen Tombs of Siberia: The Pazyryk Burials of Iron Age Horsemen. London: Dent.

Schlitz, M. 2004. “A review of low-level aerial archaeology and its application in Australia.” Australian Archaeology 59(1): 51–58. DOI:

Schmid, M. O., S. Gubler, J. Fiddes and S. Gruber. 2012. “Inferring snowpack ripening and melt-out from distributed measurements of near-surface ground temperatures.” The Cryosphere 6(5): 1127–1139. DOI:

Tapete, D. and F. Cigna. 2017. “SAR for landscape archaeology.” In Sensing the Past edited by N. Masini and F. Soldovieri, 101–116. Cham: Springer. DOI:

Tedesco, M., T. Mote, K. Steffen, D. Hall and W. Abdalati. 2014. “Remote sensing of melting snow and ice.” In Remote Sensing of the Cryosphere, edited by M. Tedesco, 99–121. Oxford: John Wiley & Sons. DOI:

Thomas, H. 2016. “Quantitative analysis of two low-cost aerial photography platforms: A case study of the site of Zagora, Andros, Greece.” Journal of Field Archaeology 41(6): 660–670. DOI:

———. 2018. “Some like it hot: The impact of next generation FLIR Systems thermal cameras on archaeological thermography.” Archaeological Prospection 25(1): 81–87. DOI:

USGS Landsat 8. 2020. “Landsat Missions – Landsat 8.” Accessed July 27, 2020.

USGS. 2020. “Landsat Provisional Surface Temperature.” Accessed July 27, 2020.

Vajsova, B., A. Walczynska, S. Bärisch, P. J. Åstrand and S. Hain. 2017. New sensors benchmark report on WorldView-4. Luxembourg, Publications Office of the European Union.

Vaughan, D. G., J.C. Comiso, I. Allison, J. Carrasco, G. Kaser, R. Kwok, P. Mote, T. Murray, F. Paul, J. Ren, E. Rignot, O. Solomina, K. Steffen and T. Zhang. 2013. “Observations: cryosphere.” Climate change 2103: 317–382.

Wack, R. and A. Wimmer. 2002. “Digital terrain models from airborne laserscanner data-a grid based approach.” International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences 34(3/B): 293–296.

Wan, Z., Y. Zhang, Q. Zhang and Z. L. Li. 2004. “Quality assessment and validation of the MODIS global land surface temperature.” International Journal of Remote Sensing 25(1): 261–274. DOI:

Westermann, S., C. R. Duguay, G. Grosse and A. Kääb. 2014. “Remote sensing of permafrost and frozen ground. In Remote Sensing of the Cryosphere, by M. Tedesco, 307–344. Oxford: John Wiley & Sons. DOI:

Xiao, X., T. Zhang, X. Zhong, W. Shao and X. Li. 2018. “Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data.” Remote Sensing of Environment 210: 48–64. DOI:



How to Cite

Caspari, G. (2021). Tracking the Cold: Remote Sensing for Glacial Archaeology. Journal of Glacial Archaeology, 5, 85–102.




Most read articles by the same author(s)